If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-7X-23=0
a = 1; b = -7; c = -23;
Δ = b2-4ac
Δ = -72-4·1·(-23)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{141}}{2*1}=\frac{7-\sqrt{141}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{141}}{2*1}=\frac{7+\sqrt{141}}{2} $
| 73=2x-17+7x | | X+y^2=62 | | .5(2x=6)=47 | | (4/7)^9-(4/7)^2=(4/7)^(2p-1) | | 13x-50+32x=130 | | 42x=75-4x=-77 | | 5f+3=2f+15 | | X5-x3+27x2-27=0 | | -2=47-7x=-34 | | 18x-30+6x=90 | | 25x-28+8x=71 | | 4x-25-28x=-19 | | x+2*x=5000 | | x+2*x=500- | | h-4/8=3 | | 0=2/45x^2-3/4x | | 0=2/45x^2-4/3x | | 4n-8=6n+4 | | 2.5^x=50 | | 2/9x+7/9x=3/5 | | 2x+x+x+30=180 | | (x-7)2=21 | | 11x=1/7 | | 3x+2x-10+2x-20=180 | | 6x*x*x-x*x-28x+27=0 | | y/5-2/5=7/10 | | 8x/5-2x/3=1 | | 2x+7/3=-5 | | -3b+5=-3b-25 | | 3t+1/2=11 | | -26+4x=52+26x | | 4x+11=106-9x |